Debarati Basu, Elizabeth S. Haswell

    • Toft-Bertelsen T.L.
    • Larsen B.R.
    • MacAulay N.

    Sensing and regulation of cell volume – we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role?.

    Channels (Austin). 2018; 12: 100-108

  • Bacterial osmoregulation: a paradigm for the study of cellular homeostasis.

    Annu. Rev. Microbiol. 2011; 65: 215-238

  • Hyperosmotic versus hypoosmotic stress in plants.

    Biochem. Anal. Biochem. 2018; 7: 1-4

    • Scharwies J.D.
    • Dinneny J.R.

    Water transport, perception, and response in plants.

    J. Plant Res. 2019; 132: 311-324

  • Life under pressure: hydrostatic pressure in cell growth and function.

    Trends Plant Sci. 2007; 12: 90-97

    • Jayaraman D.
    • Gilroy S.
    • Ané J.-M.

    Staying in touch: mechanical signals in plant-microbe interactions.

    Curr. Opin. Plant Biol. 2014; 20: 104-109

    • Jackson M.B.
    • Ishizawa K.
    • Ito O.

    Evolution and mechanisms of plant tolerance to flooding stress.

    Ann. Bot. 2009; 103: 137-142

  • Water relations in the interaction of foliar bacterial pathogens with plants.

    Annu. Rev. Phytopathol. 2011; 49: 533-555

    • Sugimoto K.
    • Himmelspach R.
    • Williamson R.E.
    • Wasteneys G.O.

    Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells.

    Plant Cell. 2003; 15: 1414-1429

    • Droillard M.-J.
    • Boudsocq M.
    • Barbier-Brygoo H.
    • Laurière C.

    Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance.

    FEBS Lett. 2004; 574: 42-48

    • Takahashi K.
    • Isobe M.
    • Knight M.R.
    • Trewavas A.J.
    • Muto S.

    Hypoosmotic shock induces increases in cytosolic Ca2+ in tobacco suspension-culture cells.

    Plant Physiol. 1997; 113: 587-594

    • Cazalé A.C.
    • Rouet-Mayer M.A.
    • Barbier-Brygoo H.
    • Mathieu Y.
    • Laurière C.

    Oxidative burst and hypoosmotic stress in tobacco cell suspensions.

    Plant Physiol. 1998; 116: 659-669

    • Nakagawa Y.
    • Katagiri T.
    • Shinozaki K.
    • Qi Z.
    • Tatsumi H.
    • Furuichi T.
    • Kishigami A.
    • Sokabe M.
    • Kojima I.
    • Sato S.
    • et al.

    Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots.

    Proc. Natl. Acad. Sci. USA. 2007; 104: 3639-3644

    • Nguyen H.T.H.
    • Bouteau F.
    • Mazars C.
    • Kuse M.
    • Kawano T.

    The involvement of calmodulin and protein kinases in the upstream of cytosolic and nucleic calcium signaling induced by hypoosmotic shock in tobacco cells.

    Plant Signal. Behav. 2018; 13: e1494467

    • Pauly N.
    • Knight M.R.
    • Thuleau P.
    • Graziana A.
    • Muto S.
    • Ranjeva R.
    • Mazars C.

    The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells.

    Cell Calcium. 2001; 30: 413-421

  • Activation of the oxidative burst in aequorin-transformed Nicotiana tabacum cells is mediated by protein kinase- and anion channel-dependent release of Ca2+ from internal stores.

    Planta. 2001; 214: 126-134

    • Cessna S.G.
    • Chandra S.
    • Low P.S.

    Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores.

    J. Biol. Chem. 1998; 273: 27286-27291

    • Kurusu T.
    • Nishikawa D.
    • Yamazaki Y.
    • Gotoh M.
    • Nakano M.
    • Hamada H.
    • Yamanaka T.
    • Iida K.
    • Nakagawa Y.
    • Saji H.
    • et al.

    Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells.

    BMC Plant Biol. 2012; 12: 11

    • Kurusu T.
    • Yamanaka T.
    • Nakano M.
    • Takiguchi A.
    • Ogasawara Y.
    • Hayashi T.
    • Iida K.
    • Hanamata S.
    • Shinozaki K.
    • Iida H.
    • Kuchitsu K.

    Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells.

    J. Plant Res. 2012; 125: 555-568

    • Hayashi T.
    • Harada A.
    • Sakai T.
    • Takagi S.

    Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall-plasma membrane adhesion.

    Plant Cell Environ. 2006; 29: 661-672

    • Shih H.-W.
    • Miller N.D.
    • Dai C.
    • Spalding E.P.
    • Monshausen G.B.

    The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings.

    Curr. Biol. 2014; 24: 1887-1892

    • Yahraus T.
    • Chandra S.
    • Legendre L.
    • Low P.S.

    Evidence for a mechanically induced oxidative burst.

    Plant Physiol. 1995; 109: 1259-1266

    • Rouet M.-A.
    • Mathieu Y.
    • Barbier-Brygoo H.
    • Laurière C.

    Characterization of active oxygen-producing proteins in response to hypo-osmolarity in tobacco and Arabidopsis cell suspensions: identification of a cell wall peroxidase.

    J. Exp. Bot. 2006; 57: 1323-1332

    • Beffagna N.
    • Buffoli B.
    • Busi C.

    Modulation of reactive oxygen species production during osmotic stress in Arabidopsis thaliana cultured cells: involvement of the plasma membrane Ca2+-ATPase and H+-ATPase.

    Plant Cell Physiol. 2005; 46: 1326-1339

    • Takahashi K.
    • Isobe M.
    • Muto S.

    An increase in cytosolic calcium ion concentration precedes hypoosmotic shock-induced activation of protein kinases in tobacco suspension culture cells.

    FEBS Lett. 1997; 401: 202-206

    • Felix G.
    • Regenass M.
    • Boller T.

    Sensing of osmotic pressure changes in tomato cells.

    Plant Physiol. 2000; 124: 1169-1180

    • Tsugama D.
    • Liu S.
    • Takano T.

    A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis.

    Plant Physiol. 2012; 159: 144-155

    • Ludwig A.A.
    • Saitoh H.
    • Felix G.
    • Freymark G.
    • Miersch O.
    • Wasternack C.
    • Boller T.
    • Jones J.D.G.
    • Romeis T.

    Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants.

    Proc. Natl. Acad. Sci. USA. 2005; 102: 10736-10741

    • Liu W.
    • Fairbairn D.J.
    • Reid R.J.
    • Schachtman D.P.

    Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability.

    Plant Physiol. 2001; 127: 283-294

    • Tsugama D.
    • Liu S.
    • Takano T.

    The bZIP protein VIP1 is involved in touch responses in Arabidopsis roots.

    Plant Physiol. 2016; 171: 1355-1365

    • Tsugama D.
    • Liu S.
    • Takano T.

    Analysis of functions of VIP1 and its close homologs in osmosensory responses of Arabidopsis thaliana.

    PLoS ONE. 2014; 9: e103930

    • Haswell E.S.
    • Verslues P.E.

    The ongoing search for the molecular basis of plant osmosensing.

    J. Gen. Physiol. 2015; 145: 389-394

    • Le Roux A.-L.
    • Quiroga X.
    • Walani N.
    • Arroyo M.
    • Roca-Cusachs P.

    The plasma membrane as a mechanochemical transducer.

    Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019; 374: 20180221

    • Gigli-Bisceglia N.
    • Engelsdorf T.
    • Hamann T.

    Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles.

    Cell. Mol. Life Sci. 2019; ()https://doi.org/10.1007/s00018-019-03388-8

    • Cuevas-Velazquez C.L.
    • Dinneny J.R.

    Organization out of disorder: liquid-liquid phase separation in plants.

    Curr. Opin. Plant Biol. 2018; 45: 68-74

    • Kobayashi M.
    • Miyamoto M.
    • Matoh T.
    • Kitajima S.
    • Hanano S.
    • Sumerta I.N.
    • Narise T.
    • Suzuki H.
    • Sakurai N.
    • Shibata D.

    Mechanism underlying rapid responses to boron deprivation in Arabidopsis roots.

    Soil Sci. Plant Nutr. 2018; 64: 106-115

    • Ranade S.S.
    • Syeda R.
    • Patapoutian A.

    Mechanically activated ion channels.

    Neuron. 2015; 87: 1162-1179

  • Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology.

    Channels (Austin). 2012; 6: 211-213

  • Plant mechanosensitive ion channels: an ocean of possibilities.

    Curr. Opin. Plant Biol. 2017; 40: 43-48

    • Engelsdorf T.
    • Gigli-Bisceglia N.
    • Veerabagu M.
    • McKenna J.F.
    • Vaahtera L.
    • Augstein F.
    • Van der Does D.
    • Zipfel C.
    • Hamann T.

    The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana.

    Sci. Signal. 2018; 11: eaao3070

    • Denness L.
    • McKenna J.F.
    • Segonzac C.
    • Wormit A.
    • Madhou P.
    • Bennett M.
    • Mansfield J.
    • Zipfel C.
    • Hamann T.

    Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis.

    Plant Physiol. 2011; 156: 1364-1374

    • Wormit A.
    • Butt S.M.
    • Chairam I.
    • McKenna J.F.
    • Nunes-Nesi A.
    • Kjaer L.
    • O’Donnelly K.
    • Fernie A.R.
    • Woscholski R.
    • Barter M.C.L.
    • Hamann T.

    Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition.

    Plant Physiol. 2012; 159: 105-117

    • Haswell E.S.
    • Meyerowitz E.M.

    MscS-like proteins control plastid size and shape in Arabidopsis thaliana.

    Curr. Biol. 2006; 16: 1-11

    • Veley K.M.
    • Marshburn S.
    • Clure C.E.
    • Haswell E.S.

    Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth.

    Curr. Biol. 2012; 22: 408-413

    • Hamilton E.S.
    • Jensen G.S.
    • Maksaev G.
    • Katims A.
    • Sherp A.M.
    • Haswell E.S.

    Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination.

    Science. 2015; 350: 438-441

    • Haswell E.S.
    • Peyronnet R.
    • Barbier-Brygoo H.
    • Meyerowitz E.M.
    • Frachisse J.M.

    Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root.

    Curr. Biol. 2008; 18: 730-734

  • MscS-like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions.

    Proc. Natl. Acad. Sci. USA. 2012; 109: 19015-19020

    • Zou Y.
    • Chintamanani S.
    • He P.
    • Fukushige H.
    • Yu L.
    • Shao M.
    • Zhu L.
    • Hildebrand D.F.
    • Tang X.
    • Zhou J.-M.

    A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis.

    J. Integr. Plant Biol. 2016; 58: 600-609

    • Laubinger S.
    • Zeller G.
    • Henz S.R.
    • Sachsenberg T.
    • Widmer C.K.
    • Naouar N.
    • Vuylsteke M.
    • Schölkopf B.
    • Rätsch G.
    • Weigel D.

    At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana.

    Genome Biol. 2008; 9: R112

    • Winter D.
    • Vinegar B.
    • Nahal H.
    • Ammar R.
    • Wilson G.V.
    • Provart N.J.

    An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets.

    PLoS ONE. 2007; 2: e718

    • Veley K.M.
    • Maksaev G.
    • Frick E.M.
    • January E.
    • Kloepper S.C.
    • Haswell E.S.

    Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity.

    Plant Cell. 2014; 26: 3115-3131

    • Basu D.
    • Shoots J.M.
    • Haswell E.S.

    Interactions between the N- and C- termini of mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation.

    J. Exp. Bot. 2020; ()

    • Tateno M.
    • Brabham C.
    • DeBolt S.

    Cellulose biosynthesis inhibitors – a multifunctional toolbox.

    J. Exp. Bot. 2016; 67: 533-542

    • Zhu X.
    • Feng Y.
    • Liang G.
    • Liu N.
    • Zhu J.-K.

    Aequorin-based luminescence imaging reveals stimulus- and tissue-specific Ca2+ dynamics in Arabidopsis plants.

    Mol. Plant. 2013; 6: 444-455

    • Knight M.R.
    • Campbell A.K.
    • Smith S.M.
    • Trewavas A.J.

    Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium.

    Nature. 1991; 352: 524-526

    • Petrov V.
    • Hille J.
    • Mueller-Roeber B.
    • Gechev T.S.

    ROS-mediated abiotic stress-induced programmed cell death in plants.

    Front. Plant Sci. 2015; 6: 69

    • Locato V.
    • Paradiso A.
    • Sabetta W.
    • De Gara L.
    • de Pinto M.C.

    Nitric oxide and reactive oxygen species in PCD signaling.

    in: Wendehenne D. Advances in Botanical Research: Nitric Oxide and Signaling in Plants. Academic,
    2016: 165-192

    • Bolwell G.P.
    • Wojtaszek P.

    Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective.

    Physiol. Mol. Plant Pathol. 1997; 51: 347-366

    • Dunand C.
    • Crèvecoeur M.
    • Penel C.

    Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases.

    New Phytol. 2007; 174: 332-341

    • Jiang K.
    • Schwarzer C.
    • Lally E.
    • Zhang S.
    • Ruzin S.
    • Machen T.
    • Remington S.J.
    • Feldman L.

    Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis.

    Plant Physiol. 2006; 141: 397-403

  • Classes of programmed cell death in plants, compared to those in animals.

    J. Exp. Bot. 2011; 62: 4749-4761

    • Olvera-Carrillo Y.
    • Van Bel M.
    • Van Hautegem T.
    • Fendrych M.
    • Huysmans M.
    • Simaskova M.
    • van Durme M.
    • Buscaill P.
    • Rivas S.
    • Coll N.S.
    • et al.

    A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants.

    Plant Physiol. 2015; 169: 2684-2699

    • Huysmans M.
    • Lema A S.
    • Coll N.S.
    • Nowack M.K.

    Dying two deaths – programmed cell death regulation in development and disease.

    Curr. Opin. Plant Biol. 2017; 35: 37-44

    • Kumar S.R.
    • Mohanapriya G.
    • Sathishkumar R.

    Abiotic stress-induced redox changes and programmed cell death in plants—a path to survival or death?.

    in: Gupta D.K. Palma J.M. Corpas F.J. Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer International Publishing,
    2016: 233-252

    • De Pinto M.C.
    • Locato V.
    • De Gara L.

    Redox regulation in plant programmed cell death.

    Plant Cell Environ. 2012; 35: 234-244

    • Tripathi A.K.
    • Pareek A.
    • Singla-Pareek S.L.

    TUNEL assay to assess extent of DNA fragmentation and programmed cell death in root cells under various stress conditions.

    Bio-protocol. 2017; 7: e2502

  • Plant caspase-like proteases in plant programmed cell death.

    Plant Signal. Behav. 2009; 4: 902-904

    • Ge Y.
    • Cai Y.-M.
    • Bonneau L.
    • Rotari V.
    • Danon A.
    • McKenzie E.A.
    • McLellan H.
    • Mach L.
    • Gallois P.

    Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis.

    Cell Death Differ. 2016; 23: 1493-1501

    • Danon A.
    • Rotari V.I.
    • Gordon A.
    • Mailhac N.
    • Gallois P.

    Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death.

    J. Biol. Chem. 2004; 279: 779-787

    • Young B.
    • Wightman R.
    • Blanvillain R.
    • Purcel S.B.
    • Gallois P.

    pH-sensitivity of YFP provides an intracellular indicator of programmed cell death.

    Plant Methods. 2010; 6: 27

    • Wilkins K.A.
    • Bosch M.
    • Haque T.
    • Teng N.
    • Poulter N.S.
    • Franklin-Tong V.E.

    Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol.

    Plant Physiol. 2015; 167: 766-779

    • Roberts J.K.
    • Callis J.
    • Jardetzky O.
    • Walbot V.
    • Freeling M.

    Cytoplasmic acidosis as a determinant of flooding intolerance in plants.

    Proc. Natl. Acad. Sci. USA. 1984; 81: 6029-6033

    • Bassil E.
    • Krebs M.
    • Halperin S.
    • Schumacher K.
    • Blumwald E.

    Fluorescent dye based measurement of vacuolar pH and K+.

    Bio-protocol. 2013; 3: e810

  • Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses.

    Plant J. 2011; 66: 969-982

    • Yao S.
    • Luo S.
    • Pan C.
    • Xiong W.
    • Xiao D.
    • Wang A.
    • Zhan J.
    • He L.

    Metacaspase MC1 enhances aluminum-induced programmed cell death of root tip cells in Peanut.

    Plant Soil. 2020; 448: 479-494

    • Coll N.S.
    • Smidler A.
    • Puigvert M.
    • Popa C.
    • Valls M.
    • Dangl J.L.

    The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy.

    Cell Death Differ. 2014; 21: 1399-1408

    • Huang L.
    • Zhang H.
    • Hong Y.
    • Liu S.
    • Li D.
    • Song F.

    Stress-responsive expression, subcellular localization and protein-protein interactions of the rice metacaspase family.

    Int. J. Mol. Sci. 2015; 16: 16216-16241

  • Nanoscale structure, mechanics and growth of epidermal cell walls.

    Curr. Opin. Plant Biol. 2018; 46: 77-86

    • Bou Daher F.
    • Chen Y.
    • Bozorg B.
    • Clough J.
    • Jönsson H.
    • Braybrook S.A.

    Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry.

    eLife. 2018; 7: e38161

    • Duval I.
    • Brochu V.
    • Simard M.
    • Beaulieu C.
    • Beaudoin N.

    Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells.

    Planta. 2005; 222: 820-831

    • Zhou F.
    • Emonet A.
    • Dénervaud Tendon V.
    • Marhavy P.
    • Wu D.
    • Lahaye T.
    • Geldner N.

    Co-incidence of damage and microbial patterns controls localized immune responses in roots.

    Cell. 2020; 180: 440-453.e18

    • Oiwa Y.
    • Kitayama K.
    • Kobayashi M.
    • Matoh T.

    Boron deprivation immediately causes cell death in growing roots of Arabidopsis thaliana (L.) Heynh.

    Soil Sci. Plant Nutr. 2013; 59: 621-627

    • Chaudhary A.
    • Chen X.
    • Gao J.
    • Leśniewska B.
    • Hammerl R.
    • Dawid C.
    • Schneitz K.

    The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency.

    PLoS Genet. 2020; 16: e1008433

    • Hamann T.
    • Bennett M.
    • Mansfield J.
    • Somerville C.

    Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses.

    Plant J. 2009; 57: 1015-1026

    • Raggi S.
    • Ferrarini A.
    • Delledonne M.
    • Dunand C.
    • Ranocha P.
    • De Lorenzo G.
    • Cervone F.
    • Ferrari S.

    The Arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage.

    Plant Physiol. 2015; 169: 2513-2525

    • Fusari C.M.
    • Kooke R.
    • Lauxmann M.A.
    • Annunziata M.G.
    • Enke B.
    • Hoehne M.
    • Krohn N.
    • Becker F.F.M.
    • Schlereth A.
    • Sulpice R.
    • et al.

    Genome-wide association mapping reveals that specific and pleiotropic regulatory mechanisms fine-tune central metabolism and growth in Arabidopsis.

    Plant Cell. 2017; 29: 2349-2373

    • Stephan A.B.
    • Kunz H.-H.
    • Yang E.
    • Schroeder J.I.

    Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters.

    Proc. Natl. Acad. Sci. USA. 2016; 113: E5242-E5249

    • Van Moerkercke A.
    • Duncan O.
    • Zander M.
    • Šimura J.
    • Broda M.
    • Vanden Bossche R.
    • Lewsey M.G.
    • Lama S.
    • Singh K.B.
    • Ljung K.
    • et al.

    A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels.

    Proc. Natl. Acad. Sci. USA. 2019; 116: 23345-23356

    • Marhava P.
    • Hoermayer L.
    • Yoshida S.
    • Marhavý P.
    • Benková E.
    • Friml J.

    Re-activation of stem cell pathways for pattern restoration in plant wound healing.

    Cell. 2019; 177: 957-969.e13

    • Tran D.
    • Galletti R.
    • Neumann E.D.
    • Dubois A.
    • Sharif-Naeini R.
    • Geitmann A.
    • Frachisse J.-M.
    • Hamant O.
    • Ingram G.C.

    A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1.

    Nat. Commun. 2017; 8: 1009

    • Guerringue Y.
    • Thomine S.
    • Frachisse J.M.

    Sensing and transducing forces in plants with MSL10 and DEK1 mechanosensors.

    FEBS Lett. 2018; 592: 1968-1979

  • Ion channels in plants.

    Physiol. Rev. 2012; 92: 1777-1811

    • Maksaev G.
    • Shoots J.M.
    • Ohri S.
    • Haswell E.S.

    Nonpolar residues in the presumptive pore-lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function.

    Plant Direct. 2018; 2: e00059

    • Coll N.S.
    • Epple P.
    • Dangl J.L.

    Programmed cell death in the plant immune system.

    Cell Death Differ. 2011; 18: 1247-1256

    • Mukhtar M.S.
    • McCormack M.E.
    • Argueso C.T.
    • Pajerowska-Mukhtar K.M.

    Pathogen tactics to manipulate plant cell death.

    Curr. Biol. 2016; 26: R608-R619

    • Huh G.-H.
    • Damsz B.
    • Matsumoto T.K.
    • Reddy M.P.
    • Rus A.M.
    • Ibeas J.I.
    • Narasimhan M.L.
    • Bressan R.A.
    • Hasegawa P.M.

    Salt causes ion disequilibrium-induced programmed cell death in yeast and plants.

    Plant J. 2002; 29: 649-659

    • Duan Y.
    • Zhang W.
    • Li B.
    • Wang Y.
    • Li K.
    • Sodmergen
    • Han C.
    • Zhang Y.
    • Li X.

    An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis.

    New Phytol. 2010; 186: 681-695

  • Molecular and cellular adaptations of maize to flooding stress.

    Ann. Bot. 2003; 91: 119-127

  • Programmed cell death in plants: an overview.

    in: Gara L. Locato V. Plant Programmed Cell Death. Methods in Molecular Biology. Humana,
    2018: 1-8

    • Mehlmer N.
    • Parvin N.
    • Hurst C.H.
    • Knight M.R.
    • Teige M.
    • Vothknecht U.C.

    A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana.

    J. Exp. Bot. 2012; 63: 1751-1761

    • Schindelin J.
    • Arganda-Carreras I.
    • Frise E.
    • Kaynig V.
    • Longair M.
    • Pietzsch T.
    • Preibisch S.
    • Rueden C.
    • Saalfeld S.
    • Schmid B.
    • et al.

    Fiji: an open-source platform for biological-image analysis.

    Nat. Methods. 2012; 9: 676-682

  • Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.

    Plant J. 1998; 16: 735-743

    • Edwards K.
    • Johnstone C.
    • Thompson C.

    A simple and rapid method for the preparation of plant genomic DNA for PCR analysis.

    Nucleic Acids Res. 1991; 19: 1349

    • Verslues P.E.
    • Agarwal M.
    • Katiyar-Agarwal S.
    • Zhu J.
    • Zhu J.-K.

    Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.

    Plant J. 2006; 45: 523-539

    • van der Weele C.M.
    • Spollen W.G.
    • Sharp R.E.
    • Baskin T.I.

    Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media.

    J. Exp. Bot. 2000; 51: 1555-1562

    • Kwon Y.
    • Shen J.
    • Lee M.H.
    • Geem K.R.
    • Jiang L.
    • Hwang I.

    AtCAP2 is crucial for lytic vacuole biogenesis during germination by positively regulating vacuolar protein trafficking.

    Proc. Natl. Acad. Sci USA. 2018; 115: E1675-E1683

    • Kardash E.
    • Bandemer J.
    • Raz E.

    Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors.

    Nat. Protoc. 2011; 6: 1835-1846

    • Achard P.
    • Renou J.-P.
    • Berthomé R.
    • Harberd N.P.
    • Genschik P.

    Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species.

    Curr. Biol. 2008; 18: 656-660

    • Chen S.X.
    • Yen C.C.
    • Jiao X.Z.

    Effect of osmotic shock on the redox system in plasma membrane of Dunaliella salina.

    Cell Res. 1996; 6: 31-38

    • Knight H.
    • Trewavas A.J.
    • Knight M.R.

    Calcium signalling in Arabidopsis thaliana responding to drought and salinity.

    Plant J. 1997; 12: 1067-1078

    • Tanaka K.
    • Choi J.
    • Stacey G.

    Aequorin luminescence-based functional calcium assay for heterotrimeric G-proteins in Arabidopsis.

    in: Running M.P. Methods in Molecular Biology (Methods and Protocols. Humana,
    2013: 45-54



  • Source link