Chloe D. Rose, David Pompili, Katrin Henke, Jenica L.M. Van Gennip, Anne Meyer-Miner, Rahul Rana, Stéphane Gobron, Matthew P. Harris, Mark Nitz, Brian Ciruna

    • Cheng J.C.
    • Castelein R.M.
    • Chu W.C.
    • Danielsson A.J.
    • Dobbs M.B.
    • Grivas T.B.
    • Gurnett C.A.
    • Luk K.D.
    • Moreau A.
    • Newton P.O.
    • et al.

    Adolescent idiopathic scoliosis.

    Nat. Rev. Dis. Primers. 2015; 1: 15030

    • Konieczny M.R.
    • Senyurt H.
    • Krauspe R.

    Epidemiology of adolescent idiopathic scoliosis.

    J. Child. Orthop. 2013; 7: 3-9

    • Kou I.
    • Otomo N.
    • Takeda K.
    • Momozawa Y.
    • Lu H.-F.
    • Kubo M.
    • Kamatani Y.
    • Ogura Y.
    • Takahashi Y.
    • Nakajima M.
    • et al.

    Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese.

    Nat. Commun. 2019; 10: 3685

    • Janssen M.M.A.
    • de Wilde R.F.
    • Kouwenhoven J.-W.M.
    • Castelein R.M.

    Experimental animal models in scoliosis research: a review of the literature.

    Spine J. 2011; 11: 347-358

  • The current status of bracing for patients with adolescent idiopathic scoliosis..

    Bone Jt. J. 2013; 95-B: 1308-1316

  • A brief overview of 100 years of history of surgical treatment for adolescent idiopathic scoliosis.

    J. Child. Orthop. 2013; 7: 57-62

    • Hayes M.
    • Gao X.
    • Yu L.X.
    • Paria N.
    • Henkelman R.M.
    • Wise C.A.
    • Ciruna B.

    ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease.

    Nat. Commun. 2014; 5: 4777

    • Grimes D.T.
    • Boswell C.W.
    • Morante N.F.C.
    • Henkelman R.M.
    • Burdine R.D.
    • Ciruna B.

    Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature.

    Science. 2016; 352: 1341-1344

    • Van Gennip J.L.M.
    • Boswell C.W.
    • Ciruna B.

    Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis.

    Sci. Adv. 2018; 4: eaav1781

    • Knowles M.R.
    • Daniels L.A.
    • Davis S.D.
    • Zariwala M.A.
    • Leigh M.W.

    Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease.

    Am. J. Respir. Crit. Care Med. 2013; 188: 913-922

    • Engesaeth V.G.
    • Warner J.O.
    • Bush A.

    New associations of primary ciliary dyskinesia syndrome.

    Pediatr. Pulmonol. 1993; 16: 9-12

    • Gobron S.
    • Monnerie H.
    • Meiniel R.
    • Creveaux I.
    • Lehmann W.
    • Lamalle D.
    • Dastugue B.
    • Meiniel A.

    SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation.

    J. Cell Sci. 1996; 109: 1053-1061

    • Rodríguez S.
    • Vio K.
    • Wagner C.
    • Barría M.
    • Navarrete E.H.
    • Ramírez V.D.
    • Pérez-Fígares J.M.
    • Rodríguez E.M.

    Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner’s fiber complex by maternal delivery of antibodies.

    Exp. Brain Res. 1999; 128: 278-290

    • Caprile T.
    • Hein S.
    • Rodríguez S.
    • Montecinos H.
    • Rodríguez E.

    Reissner fiber binds and transports away monoamines present in the cerebrospinal fluid.

    Brain Res. Mol. Brain Res. 2003; 110: 177-192

    • Vera A.
    • Stanic K.
    • Montecinos H.
    • Torrejón M.
    • Marcellini S.
    • Caprile T.

    SCO-spondin from embryonic cerebrospinal fluid is required for neurogenesis during early brain development.

    Front. Cell. Neurosci. 2013; 7: 80

    • Guerra M.M.
    • González C.
    • Caprile T.
    • Jara M.
    • Vío K.
    • Muñoz R.I.
    • Rodríguez S.
    • Rodríguez E.M.

    Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis.

    Front. Cell. Neurosci. 2015; 9: 480

    • Monnerie H.
    • Dastugue B.
    • Meiniel A.

    In vitro differentiation of chick spinal cord neurons in the presence of Reissner’s fibre, an ependymal brain secretion.

    Brain Res. Dev. Brain Res. 1997; 102: 167-176

    • Vera A.
    • Recabal A.
    • Saldivia N.
    • Stanic K.
    • Torrejón M.
    • Montecinos H.
    • Caprile T.

    Interaction between SCO-spondin and low density lipoproteins from embryonic cerebrospinal fluid modulates their roles in early neurogenesis.

    Front. Neuroanat. 2015; 9: 72

    • Cantaut-Belarif Y.
    • Sternberg J.R.
    • Thouvenin O.
    • Wyart C.
    • Bardet P.L.

    The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis.

    Curr. Biol. 2018; 28: 2479-2486.e4

    • Driever W.
    • Solnica-Krezel L.
    • Schier A.F.
    • Neuhauss S.C.
    • Malicki J.
    • Stemple D.L.
    • Stainier D.Y.
    • Zwartkruis F.
    • Abdelilah S.
    • Rangini Z.
    • et al.

    A genetic screen for mutations affecting embryogenesis in zebrafish.

    Development. 1996; 123: 37-46

    • Haffter P.
    • Granato M.
    • Brand M.
    • Mullins M.C.
    • Hammerschmidt M.
    • Kane D.A.
    • Odenthal J.
    • van Eeden F.J.M.
    • Jiang Y.J.
    • Heisenberg C.P.
    • et al.

    The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio.

    Development. 1996; 123: 1-36

    • Henke K.
    • Daane J.M.
    • Hawkins M.B.
    • Dooley C.M.
    • Busch-Nentwich E.M.
    • Stemple D.L.
    • Harris M.P.

    Genetic screen for postembryonic development in the zebrafish (Danio rerio): dominant mutations affecting adult form.

    Genetics. 2017; 207: 609-623

    • Du S.J.
    • Frenkel V.
    • Kindschi G.
    • Zohar Y.

    Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein.

    Dev. Biol. 2001; 238: 239-246

  • Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons.

    Neuron. 2004; 42: 703-716

    • Essner J.J.
    • Amack J.D.
    • Nyholm M.K.
    • Harris E.B.
    • Yost H.J.

    Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

    Development. 2005; 132: 1247-1260

  • Two modes by which Lefty proteins inhibit nodal signaling.

    Curr. Biol. 2004; 14: 618-624

    • Cheng S.K.
    • Olale F.
    • Brivanlou A.H.
    • Schier A.F.

    Lefty blocks a subset of TGFβ signals by antagonizing EGF-CFC coreceptors.

    PLoS Biol. 2004; 2: e30

    • Miller A.C.
    • Obholzer N.D.
    • Shah A.N.
    • Megason S.G.
    • Moens C.B.

    RNA-seq-based mapping and candidate identification of mutations from forward genetic screens.

    Genome Res. 2013; 23: 679-686

    • Meiniel O.
    • Meiniel R.
    • Lalloué F.
    • Didier R.
    • Jauberteau M.O.
    • Meiniel A.
    • Petit D.

    The lengthening of a giant protein: when, how, and why?.

    J. Mol. Evol. 2008; 66: 1-10

  • The complex multidomain organization of SCO-spondin protein is highly conserved in mammals.

    Brain Res. Brain Res. Rev. 2007; 53: 321-327

  • The functions of thrombospondin-1 and-2.

    Curr. Opin. Cell Biol. 2000; 12: 634-640

    • Rodríguez E.M.
    • Oksche A.
    • Hein S.
    • Rodríguez S.
    • Yulis R.

    Comparative immunocytochemical study of the subcommissural organ.

    Cell Tissue Res. 1984; 237: 427-441

    • Sakka L.
    • Delétage N.
    • Lalloué F.
    • Duval A.
    • Chazal J.
    • Lemaire J.J.
    • Meiniel A.
    • Monnerie H.
    • Gobron S.

    SCO-spondin derived peptide NX210 induces neuroprotection in vitro and promotes fiber regrowth and functional recovery after spinal cord injury.

    PLoS ONE. 2014; 9: e93179

    • Nakajima M.
    • Matsuda K.
    • Miyauchi N.
    • Fukunaga Y.
    • Watanabe S.
    • Okuyama S.
    • Pérez J.
    • Fernández-Llebrez P.
    • Shen J.
    • Furukawa Y.

    Hydrocephalus and abnormal subcommissural organ in mice lacking presenilin-1 in Wnt1 cell lineages.

    Brain Res. 2011; 1382: 275-281

    • Armstrong G.A.B.
    • Liao M.
    • You Z.
    • Lissouba A.
    • Chen B.E.
    • Drapeau P.

    Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system.

    PLoS ONE. 2016; 11: e0150188

    • Didier R.
    • Dastugue B.
    • Meiniel A.

    The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis.

    Int. J. Dev. Biol. 1995; 39: 493-499

    • Lichtenfeld J.
    • Viehweg J.
    • Schützenmeister J.
    • Naumann W.W.

    Reissner’s substance expressed as a transient pattern in vertebrate floor plate.

    Anat. Embryol. (Berl.). 1999; 200: 161-174

    • Fernández-Llebrez P.
    • Hernández S.
    • Andrades J.A.

    Immunocytochemical detection of Reissner’s fiber-like glycoproteins in the subcommissural organ and the floor plate of wildtype and cyclops mutant zebrafish larvae.

    Cell Tissue Res. 2001; 305: 115-120

  • Axon pathfinding and the floor plate factor Reissner’s substance in wildtype, cyclops and one-eyed pinhead mutants of Danio rerio.

    Brain Res. Dev. Brain Res. 2005; 154: 1-14

  • Evidence of the subcommissural organ in humans and its association with hydrocephalus.

    Neurosurg. Rev. 2002; 25: 205-215

    • Andrades J.A.
    • Becerra J.
    • Fernández-Llebrez P.

    Skeletal deformities of the gilthead sea bream (Sparus aurata, L.): study of the subcommissural organ (SCO) and Reissner’s fiber (RF).

    Ann. Anat. 1994; 176: 381-383

  • Differences in protein expression in the subcommissural organ of normal and lordotic lizards (Agama impalearis).

    Metab. Brain Dis. 2001; 16: 219-226

    • Marjoram L.
    • Alvers A.
    • Deerhake M.E.
    • Bagwell J.
    • Mankiewicz J.
    • Cocchiaro J.L.
    • Beerman R.W.
    • Willer J.
    • Sumigray K.D.
    • Katsanis N.
    • et al.

    Epigenetic control of intestinal barrier function and inflammation in zebrafish.

    Proc. Natl. Acad. Sci. USA. 2015; 112: 2770-2775

    • van der Vaart M.
    • Svoboda O.
    • Weijts B.G.
    • Espín-Palazón R.
    • Sapp V.
    • Pietri T.
    • Bagnat M.
    • Muotri A.R.
    • Traver D.

    Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation.

    Dis. Model. Mech. 2017; 10: 1439-1451

    • Ellett F.
    • Pase L.
    • Hayman J.W.
    • Andrianopoulos A.
    • Lieschke G.J.

    mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.

    Blood. 2011; 117: e49-e56

    • Renshaw S.A.
    • Loynes C.A.
    • Trushell D.M.I.
    • Elworthy S.
    • Ingham P.W.
    • Whyte M.K.B.

    A transgenic zebrafish model of neutrophilic inflammation.

    Blood. 2006; 108: 3976-3978

    • Ricciotti E.
    • FitzGerald G.A.

    Prostaglandins and inflammation.

    Arterioscler. Thromb. Vasc. Biol. 2011; 31: 986-1000

    • Cha Y.I.
    • Kim S.H.
    • Sepich D.
    • Buchanan F.G.
    • Solnica-Krezel L.
    • DuBois R.N.

    Cyclooxygenase-1-derived PGE2 promotes cell motility via the G-protein-coupled EP4 receptor during vertebrate gastrulation.

    Genes Dev. 2006; 20: 77-86

    • Esain V.
    • Kwan W.
    • Carroll K.J.
    • Cortes M.
    • Liu S.Y.
    • Frechette G.M.
    • Sheward L.M.V.
    • Nissim S.
    • Goessling W.
    • North T.E.

    Cannabinoid receptor-2 regulates embryonic hematopoietic stem cell development via prostaglandin E2 and P-selectin activity.

    Stem Cells. 2015; 33: 2596-2612

    • Cao Y.
    • Semanchik N.
    • Lee S.H.
    • Somlo S.
    • Barbano P.E.
    • Coifman R.
    • Sun Z.

    Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models.

    Proc. Natl. Acad. Sci. USA. 2009; 106: 21819-21824

    • Giustarini D.
    • Milzani A.
    • Dalle-Donne I.
    • Tsikas D.
    • Rossi R.

    N-acetylcysteine ethyl ester (NACET): a novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential.

    Biochem. Pharmacol. 2012; 84: 1522-1533

    • Giustarini D.
    • Galvagni F.
    • Dalle Donne I.
    • Milzani A.
    • Severi F.M.
    • Santucci A.
    • Rossi R.

    N-acetylcysteine ethyl ester as GSH enhancer in human primary endothelial cells: A comparative study with other drugs.

    Free Radic. Biol. Med. 2018; 126: 202-209

    • Zhang X.
    • Jia S.
    • Chen Z.
    • Chong Y.L.
    • Xie H.
    • Feng D.
    • Wu X.
    • Song D.Z.
    • Roy S.
    • Zhao C.

    Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis.

    Nat. Genet. 2018; 50: 1666-1673

    • Dowling J.J.
    • Arbogast S.
    • Hur J.
    • Nelson D.D.
    • McEvoy A.
    • Waugh T.
    • Marty I.
    • Lunardi J.
    • Brooks S.V.
    • Kuwada J.Y.
    • Ferreiro A.

    Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy.

    Brain. 2012; 135: 1115-1127

    • Berger J.
    • Sztal T.
    • Currie P.D.

    Quantification of birefringence readily measures the level of muscle damage in zebrafish.

    Biochem. Biophys. Res. Commun. 2012; 423: 785-788

    • Vio K.
    • Rodríguez S.
    • Yulis C.R.
    • Oliver C.
    • Rodríguez E.M.

    The subcommissural organ of the rat secretes Reissner’s fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments.

    Cerebrospinal Fluid Res. 2008; 5: 3

    • Troutwine B.R.
    • Gontarz P.
    • Konjikusic M.J.
    • Minowa R.
    • Monstad-Rios A.
    • Sepich D.S.
    • Kwon R.Y.
    • Solnica-Krezel L.
    • Gray R.S.

    The Reissner Fiber Is Highly Dynamic In Vivo and Controls Morphogenesis of the Spine.

    Curr. Biol. 2020; 30 ()https://doi.org/10.1016/j.cub.2020.04.015

    • Rodríguez E.M.
    • Oksche A.
    • Montecinos H.

    Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life.

    Microsc. Res. Tech. 2001; 52: 573-590

  • [Histological modifications of the human epiphysis during childhood, adulthood and aging].

    Prog. Brain Res. 1965; 10: 218-233

  • Mechanotransduction in vascular physiology and atherogenesis.

    Nat. Rev. Mol. Cell Biol. 2009; 10: 53-62

    • Hjeij R.
    • Onoufriadis A.
    • Watson C.M.
    • Slagle C.E.
    • Klena N.T.
    • Dougherty G.W.
    • Kurkowiak M.
    • Loges N.T.
    • Diggle C.P.
    • Morante N.F.C.
    • et al.
    • UK10K Consortium

    CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation.

    Am. J. Hum. Genet. 2014; 95: 257-274

    • Hall T.E.
    • Bryson-Richardson R.J.
    • Berger S.
    • Jacoby A.S.
    • Cole N.J.
    • Hollway G.E.
    • Berger J.
    • Currie P.D.

    The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy.

    Proc. Natl. Acad. Sci. USA. 2007; 104: 7092-7097

    • Montague T.G.
    • Cruz J.M.
    • Gagnon J.A.
    • Church G.M.
    • Valen E.

    CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing.

    Nucleic Acids Res. 2014; 42: W401-W407

    • Labun K.
    • Montague T.G.
    • Gagnon J.A.
    • Thyme S.B.
    • Valen E.

    CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering.

    Nucleic Acids Res. 2016; 44: W272-W276

    • Labun K.
    • Montague T.G.
    • Krause M.
    • Torres Cleuren Y.N.
    • Tjeldnes H.
    • Valen E.

    CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing.

    Nucleic Acids Res. 2019; 47: W171-W174

    • Kearse M.
    • Moir R.
    • Wilson A.
    • Stones-Havas S.
    • Cheung M.
    • Sturrock S.
    • Buxton S.
    • Cooper A.
    • Markowitz S.
    • Duran C.
    • et al.

    Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.

    Bioinformatics. 2012; 28: 1647-1649

  • User-friendly semiautomated assembly of accurate image mosaics in microscopy.

    Microsc. Res. Tech. 2007; 70: 135-146

    • Schindelin J.
    • Arganda-Carreras I.
    • Frise E.
    • Kaynig V.
    • Longair M.
    • Pietzsch T.
    • Preibisch S.
    • Rueden C.
    • Saalfeld S.
    • Schmid B.
    • et al.

    Fiji: an open-source platform for biological-image analysis.

    Nat. Methods. 2012; 9: 676-682

    • Preibisch S.
    • Saalfeld S.
    • Tomancak P.

    Globally optimal stitching of tiled 3D microscopic image acquisitions.

    Bioinformatics. 2009; 25: 1463-1465

  • Cutadapt removes adapter sequences from high-throughput sequencing reads.

    EMBnet. J. 2011; 17: 10-12

    • Dobin A.
    • Davis C.A.
    • Schlesinger F.
    • Drenkow J.
    • Zaleski C.
    • Jha S.
    • Batut P.
    • Chaisson M.
    • Gingeras T.R.

    STAR: ultrafast universal RNA-seq aligner.

    Bioinformatics. 2013; 29: 15-21

    • Li H.
    • Handsaker B.
    • Wysoker A.
    • Fennell T.
    • Ruan J.
    • Homer N.
    • Marth G.
    • Abecasis G.
    • Durbin R.
    • 1000 Genome Project Data Processing Subgroup

    The Sequence Alignment/Map format and SAMtools.

    Bioinformatics. 2009; 25: 2078-2079

    • Cerny P.
    • Marik I.
    • Pallova I.

    The radiographic method for evaluation of axial vertebral rotation – presentation of the new method.

    Scoliosis. 2014; 9: 11

  • Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio).

    Curr. Top. Dev. Biol. 2019; 134: 119-149

    • Schindelin J.
    • Rueden C.T.
    • Hiner M.C.
    • Eliceiri K.W.

    The ImageJ ecosystem: An open platform for biomedical image analysis.

    Mol. Reprod. Dev. 2015; 82: 518-529

    • Schneider C.A.
    • Rasband W.S.
    • Eliceiri K.W.

    NIH Image to ImageJ: 25 years of image analysis.

    Nat. Methods. 2012; 9: 671-675

    • Thisse C.
    • Thisse B.
    • Schilling T.F.
    • Postlethwait J.H.

    Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos.

    Development. 1993; 119: 1203-1215

    • Parant J.M.
    • George S.A.
    • Pryor R.
    • Wittwer C.T.
    • Yost H.J.

    A rapid and efficient method of genotyping zebrafish mutants.

    Dev. Dyn. 2009; 238: 3168-3174

    • Sakata-Haga H.
    • Uchishiba M.
    • Shimada H.
    • Tsukada T.
    • Mitani M.
    • Arikawa T.
    • Shoji H.
    • Hatta T.

    A rapid and nondestructive protocol for whole-mount bone staining of small fish and Xenopus.

    Sci. Rep. 2018; 8: 7453

    • Takase Y.
    • Tadokoro R.
    • Takahashi Y.

    Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos.

    Dev. Growth Differ. 2013; 55: 792-801



  • Source link