Facundo Romani, Elizabeta Banić, Stevie N. Florent, Takehiko Kanazawa, Jason Q.D. Goodger, Remco A. Mentink, Tom Dierschke, Sabine Zachgo, Takashi Ueda, John L. Bowman, Miltos Tsiantis, Javier E. Moreno

    • Delwiche C.F.
    • Cooper E.D.

    The evolutionary origin of a terrestrial flora.

    Curr. Biol. 2015; 25: R899-R910

    • Bowman J.L.
    • Kohchi T.
    • Yamato K.T.
    • Jenkins J.
    • Shu S.
    • Ishizaki K.
    • Yamaoka S.
    • Nishihama R.
    • Nakamura Y.
    • Berger F.
    • et al.

    Insights into land plant evolution garnered from the Marchantia polymorpha genome.

    Cell. 2017; 171: 287-304.e15

    • Catarino B.
    • Hetherington A.J.
    • Emms D.M.
    • Kelly S.
    • Dolan L.

    The stepwise increase in the number of transcription factor families in the Precambrian predated the diversification of plants on land.

    Mol. Biol. Evol. 2016; 33: 2815-2819

    • de Mendoza A.
    • Sebé-Pedrós A.
    • Šestak M.S.
    • Matejcic M.
    • Torruella G.
    • Domazet-Loso T.
    • Ruiz-Trillo I.

    Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages.

    Proc. Natl. Acad. Sci. USA. 2013; 110: E4858-E4866

    • Morris J.L.
    • Puttick M.N.
    • Clark J.W.
    • Edwards D.
    • Kenrick P.
    • Pressel S.
    • Wellman C.H.
    • Yang Z.
    • Schneider H.
    • Donoghue P.C.J.

    The timescale of early land plant evolution.

    Proc. Natl. Acad. Sci. USA. 2018; 115: E2274-E2283

    • Puttick M.N.
    • Morris J.L.
    • Williams T.A.
    • Cox C.J.
    • Edwards D.
    • Kenrick P.
    • Pressel S.
    • Wellman C.H.
    • Schneider H.
    • Pisani D.
    • et al.

    The interrelationships of land plants and the nature of the ancestral Embryophyte.

    Curr. Biol. 2018; 28: 733-745.e2

  • The Hepaticae and Anthocerotae of North America.

    Volume I. Columbia University,
    1966

  • Specific bodies in the cells of hepatics (Hepaticae).

    Stud. Bot. Cech. 1950; 11: 226-244

  • Anatomisch-physiologische untersuchungen über Haplomitrium hookeri N.v.E., mit vergleichung anderer lebermoose.

    Nov. Actorum Acad. Caes. Leop.-Carol. Nat. Cur. 1843; 20: 267-398

  • Ueber das vorkommen von aetherischen oelen in lebermoosen.

    Flora. 1862; 45: 545-546

  • Beitrag zur chemie und biologie der lebermoose.

    Zentrallbl. 1903; 15: 215-256

  • Beitrag zur kenntnis der ätherischen öle bei lebermoosen.

    Biol. Chem. 1905; 45: 299-319

  • Chemical constituents of bryophytes: structures and biological activity.

    J. Nat. Prod. 2018; 81: 641-660

    • Chen F.
    • Ludwiczuk A.
    • Wei G.
    • Chen X.
    • Crandall-Stotler B.
    • Bowman J.L.

    Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions.

    Crit. Rev. Plant Sci. 2018; 37: 210-231

    • Tanaka M.
    • Esaki T.
    • Kenmoku H.
    • Koeduka T.
    • Kiyoyama Y.
    • Masujima T.
    • Asakawa Y.
    • Matsui K.

    Direct evidence of specific localization of sesquiterpenes and marchantin A in oil body cells of Marchantia polymorpha L.

    Phytochemistry. 2016; 130: 77-84

    • Suire C.
    • Bouvier F.
    • Backhaus R.A.
    • Bégu D.
    • Bonneu M.
    • Camara B.

    Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies.

    Plant Physiol. 2000; 124: 971-978

  • Die oelkörper der lebermoose.

    Flora. 1874; 57: 2-6, 17–27, 33–43

  • A study of the ultrastructure of the shoot apex and leaf cells in two liverworts, with special reference to the oil bodies.

    Protoplasma. 1968; 66: 79-103

  • A comparative, transmission-electron microscopic study on the formation of oil-bodies in liverworts.

    J. Hattori Bot. Lab. 2000; 89: 209-232

    • Kanazawa T.
    • Morinaka H.
    • Ebine K.
    • Shimada T.L.
    • Ishida S.
    • Minamino N.
    • Yamaguchi K.
    • Shigenobu S.
    • Kohchi T.
    • Nakano A.
    • et al.

    Switching secretory pathway direction for organelle acquisition in plants.

    bioRxiv. 2020; https://doi.org/10.1101/2020.03.02.956961

  • Contribution a l’étude des corpes oléiformes des hépatiques des environs de Nancy. PhD thesis.

    University of Paris,
    1926

  • Recherches sur la cellule des hépatiques.

    Le Botaniste. 1930/1; 22: 105-294

    • Pressel S.
    • Duckett J.G.
    • Ligrone R.
    • Proctor M.C.F.

    Effects of de- and rehydration in desiccation-tolerant liverworts: a cytological and physiological study.

    Int. J. Plant Sci. 2009; 170: 182-199

  • Beiträge zur morphologie und biologie der algen.

    Beiträge zur Biologie der Pflanzen. 1892; 5: 461-495

  • Germination des spores et formation du game’tophyte chez Lophocolea cuspidata et Chiloscyphus polyanthus.

    Ann Bryol. 1931; 4: 49-78

  • Sur l’origine et les caractéres des éléments oléiféres des Jungermaniales.

    C. R. Hebd. Seances Acad. Sci. 1927; 184: 1473-1475

  • Pflanzen und schnecken: biologische studie über die schutzmittel der pflanzen gegen schneckenfrass.

    Jena Z. Naturwiss. 1888; 22: 557-684

    • Labandeira C.C.
    • Tremblay S.L.
    • Bartowski K.E.
    • VanAller Hernick L.

    Middle Devonian liverwort herbivory and antiherbivore defence.

    New Phytol. 2014; 202: 247-258

  • Antifungal and antibacterial potential of methanol and chloroform extracts of Marchantia polymorpha L.

    Arch. Phytopathol. Plant. Protect. 2011; 44: 726-731

  • Biologically active substances from bryophytes.

    in: Chopra R.N. Bhatla S.C. Bryophyte Development: Physiology and Biochemistry. CRC,
    1990: 259-287

  • Antibiotic activity of bryophytes.

    Bryologist. 1979; 82: 141-153

    • Komala I.
    • Ito T.
    • Yagi Y.
    • Nagashima F.
    • Asakawa Y.

    Volatile components of selected liverworts, and cytotoxic, radical scavenging and antimicrobial activities of their crude extracts.

    Nat. Prod. Commun. 2010; 5: 1375-1380

    • Wu Y.F.
    • Zhao Y.
    • Liu X.Y.
    • Gao S.
    • Cheng A.X.
    • Lou H.X.

    A bHLH transcription factor regulates bisbibenzyl biosynthesis in the liverwort Plagiochasma appendiculatum.

    Plant Cell Physiol. 2018; 59: 1187-1199

    • Kumar S.
    • Kempinski C.
    • Zhuang X.
    • Norris A.
    • Mafu S.
    • Zi J.
    • Bell S.A.
    • Nybo S.E.
    • Kinison S.E.
    • Jiang Z.
    • et al.

    Molecular diversity of terpene synthases in the liverwort Marchantia polymorpha.

    Plant Cell. 2016; 28: 2632-2650

    • Peters K.
    • Gorzolka K.
    • Bruelheide H.
    • Neumann S.

    Seasonal variation of secondary metabolites in nine different bryophytes.

    Ecol. Evol. 2018; 8: 9105-9117

    • Kubo H.
    • Nozawa S.
    • Hiwatashi T.
    • Kondou Y.
    • Nakabayashi R.
    • Mori T.
    • Saito K.
    • Takanashi K.
    • Kohchi T.
    • Ishizaki K.

    Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha.

    J. Plant Res. 2018; 131: 849-864

    • Arai H.
    • Yanagiura K.
    • Toyama Y.
    • Morohashi K.

    Genome-wide analysis of MpBHLH12, a IIIf basic helix-loop-helix transcription factor of Marchantia polymorpha.

    J. Plant Res. 2019; 132: 197-209

    • Albert N.W.
    • Thrimawithana A.H.
    • McGhie T.K.
    • Clayton W.A.
    • Deroles S.C.
    • Schwinn K.E.
    • Bowman J.L.
    • Jordan B.R.
    • Davies K.M.

    Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants.

    New Phytol. 2018; 218: 554-566

    • Kageyama A.
    • Ishizaki K.
    • Kohchi T.
    • Matsuura H.
    • Takahashi K.

    Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    Phytochemistry. 2015; 117: 547-553

    • Romani F.
    • Reinheimer R.
    • Florent S.N.
    • Bowman J.L.
    • Moreno J.E.

    Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land.

    New Phytol. 2018; 219: 408-421

    • Romani F.
    • Ribone P.A.
    • Capella M.
    • Miguel V.N.
    • Chan R.L.

    A matter of quantity: Common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors.

    Plant Sci. 2016; 251: 139-154

    • Cabello J.V.
    • Arce A.L.
    • Chan R.L.

    The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins.

    Plant J. 2012; 69: 141-153

    • González-Grandío E.
    • Pajoro A.
    • Franco-Zorrilla J.M.
    • Tarancón C.
    • Immink R.G.
    • Cubas P.

    Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds.

    Proc. Natl. Acad. Sci. USA. 2017; 114: E245-E254

    • Ribone P.A.
    • Capella M.
    • Chan R.L.

    Functional characterization of the homeodomain leucine zipper I transcription factor AtHB13 reveals a crucial role in Arabidopsis development.

    J. Exp. Bot. 2015; 66: 5929-5943

    • Moreno J.E.
    • Romani F.
    • Chan R.L.

    Arabidopsis thaliana homeodomain-leucine zipper type I transcription factors contribute to control leaf venation patterning.

    Plant Signal. Behav. 2018; 13: e1448334

    • Sakakibara K.
    • Nishiyama T.
    • Sumikawa N.
    • Kofuji R.
    • Murata T.
    • Hasebe M.

    Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens.

    Development. 2003; 130: 4835-4846

    • Bowman J.L.
    • Araki T.
    • Arteaga-Vazquez M.A.
    • Berger F.
    • Dolan L.
    • Haseloff J.
    • Ishizaki K.
    • Kyozuka J.
    • Lin S.S.
    • Nagasaki H.
    • et al.

    The naming of names: guidelines for gene nomenclature in Marchantia.

    Plant Cell Physiol. 2016; 57: 257-261

    • Tian F.
    • Yang D.-C.
    • Meng Y.-Q.
    • Jin J.
    • Gao G.

    PlantRegMap: charting functional regulatory maps in plants.

    Nucleic Acids Res. 2020; 48: D1104-D1113

    • Zhao Y.
    • Ma Q.
    • Jin X.
    • Peng X.
    • Liu J.
    • Deng L.
    • Yan H.
    • Sheng L.
    • Jiang H.
    • Cheng B.

    A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis.

    Plant Cell Physiol. 2014; 55: 1142-1156

    • Gago G.M.
    • Almoguera C.
    • Jordano J.
    • Gonzalez D.H.
    • Chan R.L.

    Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower.

    Plant Cell Environ. 2002; 25: 633-640

    • Cabello J.V.
    • Giacomelli J.I.
    • Gómez M.C.
    • Chan R.L.

    The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants.

    J. Biotechnol. 2017; 257: 35-46

    • Ferreira M.A.
    • Pinheiro Da Cruz Waltenberg F.
    • Romano De Campos Pinto E.
    • Grossi de Sa M.F.

    Use of the coffee homeobox gene <I>CAHB12</I> to produce transgenic plants with greater tolerance to water scarcity and salt stress. International patent WO2012061911A9, filed November 12, 2010, and published May 18, 2012.

    2013

    • Bhattacharjee A.
    • Khurana J.P.
    • Jain M.

    Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic Arabidopsis suggest their role in abiotic stress response.

    Front. Plant Sci. 2016; 7: 627

    • Olsson A.S.
    • Engström P.
    • Söderman E.

    The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis.

    Plant Mol. Biol. 2004; 55: 663-677

    • Valdés A.E.
    • Overnäs E.
    • Johansson H.
    • Rada-Iglesias A.
    • Engström P.

    The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities.

    Plant Mol. Biol. 2012; 80: 405-418

    • Ghosh T.K.
    • Kaneko M.
    • Akter K.
    • Murai S.
    • Komatsu K.
    • Ishizaki K.
    • Yamato K.T.
    • Kohchi T.
    • Takezawa D.

    Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements.

    Physiol. Plant. 2016; 156: 407-420

  • Zur befruchtungsphysiologie von Marchantia polymorpha L.

    Ber. Dtsch. Bot. Ges. 1909; 27: 341-348

  • Organographie der Pflanzen, Insbesondere der Archegoniaten und Samenpflanzen.

    Third Edition. Volume 2. Gustav Fischer,
    1898

  • The physiological basis of bryophyte production.

    Bot. J. Linn. Soc. 1990; 104: 61-77

  • Liverworts-potential source of medicinal compounds.

    Curr. Pharm. Des. 2008; 14: 3067-3088

    • Jia Q.
    • Li G.
    • Köllner T.G.
    • Fu J.
    • Chen X.
    • Xiong W.
    • Crandall-Stotler B.J.
    • Bowman J.L.
    • Weston D.J.
    • Zhang Y.
    • et al.

    Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants.

    Proc. Natl. Acad. Sci. USA. 2016; 113: 12328-12333

    • Kanazawa T.
    • Era A.
    • Minamino N.
    • Shikano Y.
    • Fujimoto M.
    • Uemura T.
    • Nishihama R.
    • Yamato K.T.
    • Ishizaki K.
    • Nishiyama T.
    • et al.

    SNARE molecules in Marchantia polymorpha: unique and conserved features of the membrane fusion machinery.

    Plant Cell Physiol. 2016; 57: 307-324

    • Hofer J.
    • Turner L.
    • Moreau C.
    • Ambrose M.
    • Isaac P.
    • Butcher S.
    • Weller J.
    • Dupin A.
    • Dalmais M.
    • Le Signor C.
    • et al.

    Tendril-less regulates tendril formation in pea leaves.

    Plant Cell. 2009; 21: 420-428

    • Vlad D.
    • Kierzkowski D.
    • Rast M.I.
    • Vuolo F.
    • Dello Ioio R.
    • Galinha C.
    • Gan X.
    • Hajheidari M.
    • Hay A.
    • Smith R.S.
    • et al.

    Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene.

    Science. 2014; 343: 780-783

    • Perroud P.F.
    • Haas F.B.
    • Hiss M.
    • Ullrich K.K.
    • Alboresi A.
    • Amirebrahimi M.
    • Barry K.
    • Bassi R.
    • Bonhomme S.
    • Chen H.
    • et al.

    The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data.

    Plant J. 2018; 95: 168-182

  • Studien über die ocellen der lebermoose.

    Beihefte zum Botanischen Centralblatt. 1932; 49: 569-648

  • Die ölkörper der Jungermanniales.

    Flora. 1903; 92: 457-482

  • A brief history of Marchantia from Greece to genomics.

    Plant Cell Physiol. 2016; 57: 210-229

    • Rimington W.R.
    • Pressel S.
    • Duckett J.G.
    • Field K.J.
    • Read D.J.
    • Bidartondo M.I.

    Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi.

    Proc. Biol. Sci. 2018; 285: 20181600

  • The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods.

    Insect Sci. 2007; 14: 259-275

    • Peñuelas M.
    • Monte I.
    • Schweizer F.
    • Vallat A.
    • Reymond P.
    • García-Casado G.
    • Franco-Zorrilla J.M.
    • Solano R.

    Jasmonate-related MYC transcription factors are functionally conserved in Marchantia polymorpha.

    Plant Cell. 2019; 31: 2491-2509

  • The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    Annu. Rev. Plant Biol. 2015; 66: 139-159

    • Carella P.
    • Gogleva A.
    • Hoey D.J.
    • Bridgen A.J.
    • Stolze S.C.
    • Nakagami H.
    • Schornack S.

    Conserved biochemical defenses underpin host responses to oomycete infection in an early-divergent land plant lineage.

    Curr. Biol. 2019; 29: 2282-2294.e5

    • Flores-Sandoval E.
    • Eklund D.M.
    • Bowman J.L.

    A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha.

    PLoS Genet. 2015; 11: e1005207

    • Busch A.
    • Deckena M.
    • Almeida-Trapp M.
    • Kopischke S.
    • Kock C.
    • Schüssler E.
    • Tsiantis M.
    • Mithöfer A.
    • Zachgo S.

    MpTCP1 controls cell proliferation and redox processes in Marchantia polymorpha.

    New Phytol. 2019; 224: 1627-1641

    • Ishizaki K.
    • Nishihama R.
    • Ueda M.
    • Inoue K.
    • Ishida S.
    • Nishimura Y.
    • Shikanai T.
    • Kohchi T.

    Development of Gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha.

    PLoS ONE. 2015; 10: e0138876

    • Sugano S.S.
    • Nishihama R.
    • Shirakawa M.
    • Takagi J.
    • Matsuda Y.
    • Ishida S.
    • Shimada T.
    • Hara-Nishimura I.
    • Osakabe K.
    • Kohchi T.

    Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha.

    PLoS ONE. 2018; 13: e0205117

    • Kim D.
    • Pertea G.
    • Trapnell C.
    • Pimentel H.
    • Kelley R.
    • Salzberg S.L.

    TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.

    Genome Biol. 2013; 14: R36

    • Robinson J.T.
    • Thorvaldsdóttir H.
    • Winckler W.
    • Guttman M.
    • Lander E.S.
    • Getz G.
    • Mesirov J.P.

    Integrative genomics viewer.

    Nat. Biotechnol. 2011; 29: 24-26

    • Anders S.
    • Pyl P.T.
    • Huber W.

    HTSeq–a Python framework to work with high-throughput sequencing data.

    Bioinformatics. 2015; 31: 166-169

    • Afgan E.
    • Sloggett C.
    • Goonasekera N.
    • Makunin I.
    • Benson D.
    • Crowe M.
    • Gladman S.
    • Kowsar Y.
    • Pheasant M.
    • Horst R.
    • Lonie A.

    Genomics virtual laboratory: a practical bioinformatics workbench for the cloud.

    PLoS ONE. 2015; 10: e0140829

  • Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy.

    Fourth Edition. Allured Pub.,
    2009

    • Ishizaki K.
    • Nishihama R.
    • Yamato K.T.
    • Kohchi T.

    Molecular genetic tools and techniques for Marchantia polymorpha research.

    Plant Cell Physiol. 2016; 57: 262-270

    • Ishizaki K.
    • Chiyoda S.
    • Yamato K.T.
    • Kohchi T.

    Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology.

    Plant Cell Physiol. 2008; 49: 1084-1091

    • Kubota A.
    • Ishizaki K.
    • Hosaka M.
    • Kohchi T.

    Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli.

    Biosci. Biotechnol. Biochem. 2013; 77: 167-172

    • Sugano S.S.
    • Shirakawa M.
    • Takagi J.
    • Matsuda Y.
    • Shimada T.
    • Hara-Nishimura I.
    • Kohchi T.

    CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.

    Plant Cell Physiol. 2014; 55: 475-481

    • Hisanaga T.
    • Okahashi K.
    • Yamaoka S.
    • Kajiwara T.
    • Nishihama R.
    • Shimamura M.
    • Yamato K.T.
    • Bowman J.L.
    • Kohchi T.
    • Nakajima K.

    A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort.

    EMBO J. 2019; 38: e100240

    • Eshed Y.
    • Baum S.F.
    • Bowman J.L.

    Distinct mechanisms promote polarity establishment in carpels of Arabidopsis.

    Cell. 1999; 99: 199-209

    • Barbier de Reuille P.
    • Routier-Kierzkowska A.L.
    • Kierzkowski D.
    • Bassel G.W.
    • Schüpbach T.
    • Tauriello G.
    • Bajpai N.
    • Strauss S.
    • Weber A.
    • Kiss A.
    • et al.

    MorphoGraphX: a platform for quantifying morphogenesis in 4D.

    eLife. 2015; 4: 05864

    • Ré D.A.
    • Capella M.
    • Bonaventure G.
    • Chan R.L.

    Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress.

    BMC Plant Biol. 2014; 14: 150

    • Nakazaki A.
    • Yamada K.
    • Kunieda T.
    • Sugiyama R.
    • Hirai M.Y.
    • Tamura K.
    • Hara-Nishimura I.
    • Shimada T.

    Leaf endoplasmic reticulum bodies identified in Arabidopsis rosette leaves are involved in defense against herbivory.

    Plant Physiol. 2019; 179: 1515-1524

    • Hockett K.L.
    • Baltrus D.A.

    Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds.

    J. Vis. Exp. 2017; 119: 55064

    • Flores-Sandoval E.
    • Romani F.
    • Bowman J.L.

    Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module.

    Front. Plant Sci. 2018; 9: 1345

    • Montgomery S.A.
    • Tanizawa Y.
    • Galik B.
    • Wang N.
    • Ito T.
    • Mochizuki T.
    • Akimcheva S.
    • Bowman J.L.
    • Cognat V.
    • Maréchal-Drouard L.
    • et al.

    Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin.

    Curr. Biol. 2020; 30: 573-588.e7

    • Davies K.M.
    • Jibran R.
    • Zhou Y.
    • Albert N.W.
    • Brummell D.A.
    • Jordan B.R.
    • Bowman J.L.
    • Schwinn K.E.

    The evolution of flavonoid biosynthesis: a bryophyte perspective.

    Front. Plant Sci. 2020; 11: 7



  • Source link