Oscar Woolnough, Patrick S. Rollo, Kiefer J. Forseth, Cihan M. Kadipasaoglu, Arne D. Ekstrom, Nitin Tandon

  • The nature of recollection and familiarity: a review of 30 years of research.

    J. Mem. Lang. 2002; 46: 441-517

  • The role of the hippocampus in recognition memory.

    Cortex. 2017; 93: 155-165

    • Jacoby L.L.
    • Toth J.P.
    • Yonelinas A.P.

    Separating conscious and unconscious influences of memory: measuring recollection.

    J. Exp. Psychol. Gen. 1993; 122: 139-154

  • Recognizing: the judgment of previous occurrence.

    Psychol. Rev. 1980; 87: 252-271

    • Schoemaker D.
    • Mascret C.
    • Collins D.L.
    • Yu E.
    • Gauthier S.
    • Pruessner J.C.

    Recollection and familiarity in aging individuals: Gaining insight into relationships with medial temporal lobe structural integrity.

    Hippocampus. 2017; 27: 692-701

    • Schoemaker D.
    • Gauthier S.
    • Pruessner J.C.

    Recollection and familiarity in aging individuals with mild cognitive impairment and Alzheimer’s disease: a literature review.

    Neuropsychol. Rev. 2014; 24: 313-331

    • Brambati S.M.
    • Benoit S.
    • Monetta L.
    • Belleville S.
    • Joubert S.

    The role of the left anterior temporal lobe in the semantic processing of famous faces.

    Neuroimage. 2010; 53: 674-681

    • Martin C.B.
    • McLean D.A.
    • O’Neil E.B.
    • Köhler S.

    Distinct familiarity-based response patterns for faces and buildings in perirhinal and parahippocampal cortex.

    J. Neurosci. 2013; 33: 10915-10923

  • Functional neuroimaging of autobiographical memory.

    Trends Cogn. Sci. 2007; 11: 219-227

    • Gardini S.
    • Cornoldi C.
    • De Beni R.
    • Venneri A.

    Left mediotemporal structures mediate the retrieval of episodic autobiographical mental images.

    Neuroimage. 2006; 30: 645-655

    • Valenstein E.
    • Bowers D.
    • Verfaellie M.
    • Heilman K.M.
    • Day A.
    • Watson R.T.

    Retrosplenial amnesia.

    Brain. 1987; 110: 1631-1646

  • Two cortical systems for memory-guided behaviour.

    Nat. Rev. Neurosci. 2012; 13: 713-726

    • Argyropoulos G.P.
    • Loane C.
    • Roca-Fernandez A.
    • Lage-Martinez C.
    • Gurau O.
    • Irani S.R.
    • Butler C.R.

    Network-wide abnormalities explain memory variability in hippocampal amnesia.

    eLife. 2019; 8: e46156

    • Gilmore A.W.W.
    • Nelson S.M.M.
    • McDermott K.B.B.

    A parietal memory network revealed by multiple MRI methods.

    Trends Cogn. Sci. 2015; 19: 534-543

    • Silson E.H.
    • Steel A.D.
    • Baker C.I.

    Scene-selectivity and retinotopy in medial parietal cortex.

    Front. Hum. Neurosci. 2016; 10: 412

  • The hippocampus.

    Curr. Biol. 2015; 25: R1116-R1121

    • Chrastil E.R.
    • Sherrill K.R.
    • Hasselmo M.E.
    • Stern C.E.

    There and back again: hippocampus and retrosplenial cortex track homing distance during human path integration.

    J. Neurosci. 2015; 35: 15442-15452

    • Hashimoto R.
    • Tanaka Y.
    • Nakano I.

    Heading disorientation: a new test and a possible underlying mechanism.

    Eur. Neurol. 2010; 63: 87-93

    • Auger S.D.
    • Mullally S.L.
    • Maguire E.A.

    Retrosplenial cortex codes for permanent landmarks.

    PLoS ONE. 2012; 7: e43620

    • Epstein R.A.
    • Higgins J.S.
    • Jablonski K.
    • Feiler A.M.

    Visual scene processing in familiar and unfamiliar environments.

    J. Neurophysiol. 2007; 97: 3670-3683

    • Zhang H.
    • Copara M.
    • Ekstrom A.D.

    Differential recruitment of brain networks following route and cartographic map learning of spatial environments.

    PLoS ONE. 2012; 7: e44886

    • Dhindsa K.
    • Drobinin V.
    • King J.
    • Hall G.B.
    • Burgess N.
    • Becker S.

    Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations.

    Front. Hum. Neurosci. 2014; 8: 709

    • Bernard F.A.
    • Bullmore E.T.
    • Graham K.S.
    • Thompson S.A.
    • Hodges J.R.
    • Fletcher P.C.

    The hippocampal region is involved in successful recognition of both remote and recent famous faces.

    Neuroimage. 2004; 22: 1704-1714

    • Lee T.M.C.
    • Leung M.K.
    • Lee T.M.Y.
    • Raine A.
    • Chan C.C.H.

    I want to lie about not knowing you, but my precuneus refuses to cooperate.

    Sci. Rep. 2013; 3: 1636

  • Neural response to the visual familiarity of faces.

    Brain Res. Bull. 2006; 71: 76-82

    • Visconti di Oleggio Castello M.
    • Halchenko Y.O.
    • Guntupalli J.S.
    • Gors J.D.
    • Gobbini M.I.

    The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception.

    Sci. Rep. 2017; 7: 12237

    • Silson E.H.
    • Steel A.
    • Kidder A.
    • Gilmore A.W.
    • Baker C.I.

    Distinct subdivisions of human medial parietal cortex support recollection of people and places.

    eLife. 2019; 8 ()

    • Kadipasaoglu C.M.
    • Conner C.R.
    • Whaley M.L.
    • Baboyan V.G.
    • Tandon N.

    Category-selectivity in human visual cortex follows cortical topology: a grouped icEEG study.

    PLoS ONE. 2016; 11: e0157109

    • Ghuman A.S.
    • Brunet N.M.
    • Li Y.
    • Konecky R.O.
    • Pyles J.A.
    • Walls S.A.
    • Destefino V.
    • Wang W.
    • Richardson R.M.

    Dynamic encoding of face information in the human fusiform gyrus.

    Nat. Commun. 2014; 5: 5672

    • Tang H.
    • Buia C.
    • Madhavan R.
    • Crone N.E.
    • Madsen J.R.
    • Anderson W.S.
    • Kreiman G.

    Spatiotemporal dynamics underlying object completion in human ventral visual cortex.

    Neuron. 2014; 83: 736-748

    • Gomez J.
    • Barnett M.
    • Grill-Spector K.

    Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex.

    Nat. Hum. Behav. 2019; 3: 611-624

    • Aguirre G.K.
    • Zarahn E.
    • D’Esposito M.

    An area within human ventral cortex sensitive to “building” stimuli: evidence and implications.

    Neuron. 1998; 21: 373-383

    • Kanwisher N.
    • McDermott J.
    • Chun M.M.

    The fusiform face area: a module in human extrastriate cortex specialized for face perception.

    J. Neurosci. 1997; 17: 4302-4311

    • Diana R.A.
    • Yonelinas A.P.
    • Ranganath C.

    High-resolution multi-voxel pattern analysis of category selectivity in the medial temporal lobes.

    Hippocampus. 2008; 18: 536-541

    • Fairhall S.L.
    • Anzellotti S.
    • Ubaldi S.
    • Caramazza A.

    Person- and place-selective neural substrates for entity-specific semantic access.

    Cereb. Cortex. 2014; 24: 1687-1696

    • O’Craven K.M.
    • Kanwisher N.

    Mental imagery of faces and places activates corresponding stiimulus-specific brain regions.

    J. Cogn. Neurosci. 2000; 12: 1013-1023

  • A cortical representation of the local visual environment.

    Nature. 1998; 392: 598-601

    • Cavanna A.E.
    • Trimble M.R.

    The precuneus: a review of its functional anatomy and behavioural correlates.

    Brain. 2006; 129: 564-583

    • Glasser M.F.
    • Coalson T.S.
    • Robinson E.C.
    • Hacker C.D.
    • Harwell J.
    • Yacoub E.
    • Ugurbil K.
    • Andersson J.
    • Beckmann C.F.
    • Jenkinson M.
    • et al.

    A multi-modal parcellation of human cerebral cortex.

    Nature. 2016; 536: 171-178

    • Ono M.
    • Kubik S.
    • Abernathey C.

    Atlas of the Cerebral Sulci.

    Thieme Medical Publishers,
    1990

    • Kadipasaoglu C.M.
    • Baboyan V.G.
    • Conner C.R.
    • Chen G.
    • Saad Z.S.
    • Tandon N.

    Surface-based mixed effects multilevel analysis of grouped human electrocorticography.

    Neuroimage. 2014; 101: 215-224

    • Binder J.R.
    • Desai R.H.
    • Graves W.W.
    • Conant L.L.

    Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies.

    Cereb. Cortex. 2009; 19: 2767-2796

    • Conner C.R.
    • Chen G.
    • Pieters T.A.
    • Tandon N.

    Category specific spatial dissociations of parallel processes underlying visual naming.

    Cereb. Cortex. 2014; 24: 2741-2750

    • Forseth K.J.
    • Kadipasaoglu C.M.
    • Conner C.R.
    • Hickok G.
    • Knight R.T.
    • Tandon N.

    A lexical semantic hub for heteromodal naming in middle fusiform gyrus.

    Brain. 2018; 141: 2112-2126

    • Foster B.L.
    • Kaveh A.
    • Dastjerdi M.
    • Miller K.J.
    • Parvizi J.

    Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval.

    J. Neurosci. 2013; 33: 10439-10446

    • Fuentemilla L.
    • Barnes G.R.
    • Düzel E.
    • Levine B.

    Theta oscillations orchestrate medial temporal lobe and neocortex in remembering autobiographical memories.

    Neuroimage. 2014; 85: 730-737

    • Solomon E.A.
    • Kragel J.E.
    • Sperling M.R.
    • Sharan A.
    • Worrell G.
    • Kucewicz M.
    • Inman C.S.
    • Lega B.
    • Davis K.A.
    • Stein J.M.
    • et al.

    Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition.

    Nat. Commun. 2017; 8: 1704

    • Watrous A.J.
    • Tandon N.
    • Conner C.R.
    • Pieters T.
    • Ekstrom A.D.

    Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval.

    Nat. Neurosci. 2013; 16: 349-356

    • Schedlbauer A.M.
    • Copara M.S.
    • Watrous A.J.
    • Ekstrom A.D.

    Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans.

    Sci. Rep. 2014; 4: 6431

    • Maeshima S.
    • Osawa A.
    • Yamane F.
    • Yoshihara T.
    • Kanazawa R.
    • Ishihara S.

    Retrosplenial amnesia without topographic disorientation caused by a lesion in the nondominant hemisphere.

    J. Stroke Cerebrovasc. Dis. 2014; 23: 441-445

    • Maeshima S.
    • Ozaki F.
    • Masuo O.
    • Yamaga H.
    • Okita R.
    • Moriwaki H.

    Memory impairment and spatial disorientation following a left retrosplenial lesion.

    J. Clin. Neurosci. 2001; 8: 450-451

    • McDonald C.R.
    • Crosson B.
    • Valenstein E.
    • Bowers D.

    Verbal encoding deficits in a patient with a left retrosplenial lesion.

    Neurocase. 2001; 7: 407-417

    • Garden D.L.F.
    • Massey P.V.
    • Caruana D.A.
    • Johnson B.
    • Warburton E.C.
    • Aggleton J.P.
    • Bashir Z.I.

    Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices: expanding the pathology of diencephalic amnesia.

    Brain. 2009; 132: 1847-1857

    • Albasser M.M.
    • Poirier G.L.
    • Warburton E.C.
    • Aggleton J.P.

    Hippocampal lesions halve immediate-early gene protein counts in retrosplenial cortex: distal dysfunctions in a spatial memory system.

    Eur. J. Neurosci. 2007; 26: 1254-1266

    • Nestor P.J.
    • Fryer T.D.
    • Ikeda M.
    • Hodges J.R.

    Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease).

    Eur. J. Neurosci. 2003; 18: 2663-2667

    • Minoshima S.
    • Giordani B.
    • Berent S.
    • Frey K.A.
    • Foster N.L.
    • Kuhl D.E.

    Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease.

    Ann. Neurol. 1997; 42: 85-94

    • Rutishauser U.
    • Ye S.
    • Koroma M.
    • Tudusciuc O.
    • Ross I.B.
    • Chung J.M.
    • Mamelak A.N.

    Representation of retrieval confidence by single neurons in the human medial temporal lobe.

    Nat. Neurosci. 2015; 18: 1041-1050

    • Kahn I.
    • Andrews-Hanna J.R.
    • Vincent J.L.
    • Snyder A.Z.
    • Buckner R.L.

    Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity.

    J. Neurophysiol. 2008; 100: 129-139

    • Chrastil E.R.R.
    • Tobyne S.M.M.
    • Nauer R.K.K.
    • Chang A.E.E.
    • Stern C.E.E.

    Converging meta-analytic and connectomic evidence for functional subregions within the human retrosplenial region.

    Behav. Neurosci. 2018; 132: 339-355

    • Baldassano C.
    • Esteva A.
    • Fei-Fei L.
    • Beck D.M.

    Two distinct scene-processing networks connecting vision and memory.

    eNeuro. 2016; 3 ()

    • Schedlbauer A.
    • Ekstrom A.

    Memory and networks: network-based approaches to understanding the neural basis of human episodic memory.

    in: Byrne J.H. Learning and Memory: A Comprehensive Reference. Elsevier,
    2017: 99-111

    • Kim K.
    • Ekstrom A.D.
    • Tandon N.

    A network approach for modulating memory processes via direct and indirect brain stimulation: toward a causal approach for the neural basis of memory.

    Neurobiol. Learn. Mem. 2016; 134: 162-177

    • Nasr S.
    • Liu N.
    • Devaney K.J.
    • Yue X.
    • Rajimehr R.
    • Ungerleider L.G.
    • Tootell R.B.H.

    Scene-selective cortical regions in human and nonhuman primates.

    J. Neurosci. 2011; 31: 13771-13785

    • Vann S.D.
    • Aggleton J.P.
    • Maguire E.A.

    What does the retrosplenial cortex do?.

    Nat. Rev. Neurosci. 2009; 10: 792-802

    • Wang Y.
    • Metoki A.
    • Smith D.V.
    • Medaglia J.D.
    • Zang Y.
    • Benear S.
    • Popal H.
    • Lin Y.
    • Olson I.R.

    Multimodal mapping of the face connectome.

    Nat. Hum. Behav. 2020; 4: 397-411

    • Peer M.
    • Salomon R.
    • Goldberg I.
    • Blanke O.
    • Arzy S.

    Brain system for mental orientation in space, time, and person.

    Proc. Natl. Acad. Sci. USA. 2015; 112: 11072-11077

    • Golarai G.
    • Ghahremani D.G.
    • Whitfield-Gabrieli S.
    • Reiss A.
    • Eberhardt J.L.
    • Gabrieli J.D.E.
    • Grill-Spector K.

    Differential development of high-level visual cortex correlates with category-specific recognition memory.

    Nat. Neurosci. 2007; 10: 512-522

    • Golarai G.
    • Liberman A.
    • Yoon J.M.D.
    • Grill-Spector K.

    Differential development of the ventral visual cortex extends through adolescence.

    Front. Hum. Neurosci. 2010; 3: 80

  • Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity.

    Neuron. 2017; 95: 457-471.e5

  • The brain’s default network and its adaptive role in internal mentation.

    Neuroscientist. 2012; 18: 251-270

    • Buckner R.L.
    • DiNicola L.M.

    The brain’s default network: updated anatomy, physiology and evolving insights.

    Nat. Rev. Neurosci. 2019; 20: 593-608

    • DiNicola L.M.
    • Braga R.M.
    • Buckner R.L.

    Parallel distributed networks dissociate episodic and social functions within the individual.

    J. Neurophysiol. 2020; 123: 1144-1179

    • Andrews-Hanna J.R.
    • Reidler J.S.
    • Sepulcre J.
    • Poulin R.
    • Buckner R.L.

    Functional-anatomic fractionation of the brain’s default network.

    Neuron. 2010; 65: 550-562

    • Mars R.B.
    • Neubert F.X.
    • Noonan M.P.
    • Sallet J.
    • Toni I.
    • Rushworth M.F.S.

    On the relationship between the “default mode network” and the “social brain”.

    Front. Hum. Neurosci. 2012; 6: 189

    • Gegenfurtner K.R.
    • Rieger J.

    Sensory and cognitive contributions of color to the recognition of natural scenes.

    Curr. Biol. 2000; 10: 805-808

  • Face recognition with multi-tone and two-tone photographic negatives.

    Perception. 1997; 26: 1289-1296

    • Foster B.L.
    • Dastjerdi M.
    • Parvizi J.

    Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing.

    Proc. Natl. Acad. Sci. USA. 2012; 109: 15514-15519

    • Natu V.S.
    • Lin J.J.
    • Burks A.
    • Arora A.
    • Rugg M.D.
    • Lega B.

    Stimulation of the posterior cingulate cortex impairs episodic memory encoding.

    J. Neurosci. 2019; 39: 7173-7182

    • Moore 4th, B.D.
    • Aron A.R.
    • Tandon N.

    Closed-loop intracranial stimulation alters movement timing in humans.

    Brain Stimul. 2018; 11: 886-895

  • AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.

    Comput. Biomed. Res. 1996; 29: 162-173

    • Dale A.M.
    • Fischl B.
    • Sereno M.I.

    Cortical surface-based analysis. I. Segmentation and surface reconstruction.

    Neuroimage. 1999; 9: 179-194

  • Mapping of human language.

    in: Yoshor D. Mizrahi E. Clinical Brain Mapping. McGraw Hill Education,
    2012: 203-218

    • Conner C.R.
    • Ellmore T.M.
    • Pieters T.A.
    • DiSano M.A.
    • Tandon N.

    Variability of the relationship between electrophysiology and BOLD-fMRI across cortical regions in humans.

    J. Neurosci. 2011; 31: 12855-12865

    • Pieters T.A.
    • Conner C.R.
    • Tandon N.

    Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes.

    J. Neurosurg. 2013; 118: 1086-1097

    • Tandon N.
    • Tong B.A.
    • Friedman E.R.
    • Johnson J.A.
    • Von Allmen G.
    • Thomas M.S.
    • Hope O.A.
    • Kalamangalam G.P.
    • Slater J.D.
    • Thompson S.A.

    Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy.

    JAMA Neurol. 2019; 76: 672-681

    • Fischl B.
    • Sereno M.I.
    • Dale A.M.

    Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system.

    Neuroimage. 1999; 9: 195-207

    • Kadipasaoglu C.M.
    • Forseth K.
    • Whaley M.
    • Conner C.R.
    • Rollo M.J.
    • Baboyan V.G.
    • Tandon N.

    Development of grouped icEEG for the study of cognitive processing.

    Front. Psychol. 2015; 6: 1008



  • Source link